Đáp án:
Giải thích các bước giải:
u1(1+q+q2+q3+q4)=49u1(1+u1(1+q+q2+q3+q4)=49u1(1+ 1q+1q+ 1q2+1q2+ 1q3+1q3+ 1q4)1q4)
⇔u1(1+q+q2+q3+q4)=49u1q4+q3+q2+q+1q4u1(1+q+q2+q3+q4)=49u1q4+q3+q2+q+1q4
⇔(u21.q4)=49(u12.q4)=49
⇔[u1q2=7u1q2=−7[u1q2=7u1q2=−7
TH1: u1q2=7u1q2=7
⇒u1+u1.q2=35u1+u1.q2=35
⇔u1+7=35u1+7=35
⇔u1=28u1=28
⇒q=±1/2q=±1/2
TH2: u1q2=−7u1q2=−7
⇒u1+u1.q2=35u1+u1.q2=35
⇔u1−7=35u1−7=35
⇔u1=42u1=42
⇒q2=−1/6(loại)q2=−1/6(loại)
vậy u1=28;q=±1/2