Cặp số (x;y) là nghiệm của hệ phương trình \(\left\{ \matrix{xy + {y^2} + x - 3y = 0 \hfill \cr {x^2} + xy - 2y = 0 \hfill \cr} \right.\)Giá trị x + y có thể là bao nhiêu trong các giá trị sau: A.x + y = -1B.x + y = 0C.x + y = 3D.x + y = -2
Hệ phương trình nào trong các hệ phương trình sau vô nghiệm: A.\(\left\{ \matrix{ x + y = 3 \hfill \cr {x^2} + {y^2} = 5 \hfill \cr} \right.\)B.\(\left\{ \matrix{2x - y = 1 \hfill \cr x + y = 2 \hfill \cr} \right.\)C.\(\left\{ \matrix{2x - 3y = 4 \hfill \cr x + 2y = 4 \hfill \cr} \right.\)D.\(\left\{ \matrix{ x - y = - 2 \hfill \cr {x^2} + {y^2} = 1 \hfill \cr} \right.\)
Hệ phương trình \(\left\{ \matrix{x - y + 1 = 0 \hfill \cr 2{x^2} - xy + 3{y^2} + 7x - 12y + 5 = 0 \hfill \cr} \right.\) có cặp nghiệm (x;y) là: A.\(\left( {x;y} \right) \in \left\{ {\left( {2;1} \right);\left( {0; - 1} \right)} \right\}\)B.\(\left( {x;y} \right) \in \left\{ {\left( {1;2} \right);\left( {0; - 1} \right)} \right\}\)C.\(\left( {x;y} \right) \in \left\{ {\left( {1;2} \right);\left( {- 1; 0} \right)} \right\}\)D.\(\left( {x;y} \right) \in \left\{ {\left( {2;1} \right);\left( {- 1; 0} \right)} \right\}\)
Cặp số \((x;y) = (1;3)\) là nghiệm của hệ phương trình nào trong các hệ phương trình sau: A.\(\left\{ \matrix{ x - y = 2 \hfill \cr x + y = 4 \hfill \cr} \right.\)B.\(\left\{ \matrix{ 2x - y = - 1 \hfill \cr {x^2} + y = 4 \hfill \cr} \right.\)C.\(\left\{ \matrix{{x^3} + y = 4 \hfill \cr 2x + y = 4 \hfill \cr} \right.\)D.\(\left\{ \matrix{{x^2} + {y^2} = 10 \hfill \cr x - y = 2 \hfill \cr} \right.\)
Cho đoạn mạch điện xoay chiều A,B mắc nối tiếp theo thứ tự gồm điện trở R, cuộn thuần cảm có độ tự cảm L = 0,2/ và tụ điện có điện dung C thay đổi được. Đặt vào hai đầu đoạn mạch hiệu điện thế u=U0cos(ωt) (V). Biến đổi C người ta thấy khi C=C1=10-3/2π F thì dòng điện trong mạch trễ pha π/4 so với uAB. Khi C=C2=10-3/5π F thì UC=UCmax. Giá trị của R và ω tương ứng là: A.10 Ω, 100π (rad/s).B. Ω, 100π (rad/s)C.50 Ω, 120π (rad/s).D.5 Ω, 120π (rad/s).
Cho (x;y;z) là nghiệm của hệ phương trình \(\left\{ \matrix{36{x^2}y - 60{x^2} + 25y = 0 \hfill \cr 36{y^2}z - 60{y^2} + 25z = 0 \hfill \cr 36{z^2}x - 60{z^2} + 25x = 0 \hfill \cr} \right.\)Giá trị nhỏ nhất A = x + y + z của là: A.A = 0B.\(A = {5 \over 2}\)C.A = 1D.A = -2
Xác định tỉ số các khối lượng riêng của hai chất lỏng cho trước nhờ các dụng cụ và vật liệu sau: hai bình chứa các chất lỏng khác nhau; đòn bẩy; hai quả nặng có khối lượng bằng nhau; giá đỡ có khớp nối; thước thẳng. A.Click để xem đáp án.B.Click để xem đáp án.C.Click để xem đáp án.D.Click để xem đáp án.
Cho điểm \(A\left( 2;2 \right)\) thuộc đồ thị hàm số \(\left( C \right):y=a{{x}^{2}}\). Hàm số đó là : A. \(y=\frac{1}{2}{{x}^{2}}\) B. \(y=-\frac{1}{2}{{x}^{2}}\) C. \(y=-\frac{1}{4}{{x}^{2}}\) D. \(y=\frac{1}{4}{{x}^{2}}\)
Cho biết \({\rm{cos }}\alpha {\rm{ = }}{1 \over 3}\). Giá trị của biểu thức\(A = {{\cot \alpha + 3\tan \alpha } \over {2\cot \alpha + \tan \alpha }}\) là: A.\( - {5 \over 2}\)B.\({5 \over 2}\)C.\({2 \over 5}\)D.\( - {2 \over 5}\)
Đồng vị 24Na phóng xạ β- với chu kỳ bán rã T tạo thành hạt nhân con 24Mg. Tại thời điểm bắt đầu khảo sát thì tỉ số khối lượng 24Mg và 24Na là 0,25. Sau thời gian 3T thì tỉ số trên là A.14B.4C.9D.12
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến