\(y = {\cot ^2}\dfrac{2}{x} + \tan \dfrac{{x + 1}}{2}.\)
A.\(4\cot {2 \over x}{1 \over {{x^2}{{\sin }^2}{2 \over x}}} + {1 \over {2{{\cos }^2}{{x + 1} \over 2}}}\)
B.\(2\cot {2 \over x}{1 \over {{x^2}{{\sin }^2}{2 \over x}}} + {1 \over {2{{\cos }^2}{{x + 1} \over 2}}}\)
C.\(4\cot {2 \over x}{1 \over {{x^2}{{\sin }^2}{2 \over x}}} - {1 \over {2{{\cos }^2}{{x + 1} \over 2}}}\)
D.\(4\cot {2 \over x}{1 \over {{x^2}{{\sin }^2}{2 \over x}}} + {2 \over {{{\cos }^2}{{x + 1} \over 2}}}\)