Có bao nhiêu giá trị nguyên của tham số m để phương trình \[{{\log }_{\sqrt{3}}}(x-1)+{{\log }_{\frac{1}{3}}}(mx-8)={{\log }_{2}}\left( 2+\sqrt{3} \right)+{{\log }_{2}}\left( 2-\sqrt{3} \right)\] có hai nghiệm thực phân biệt?
Cho $f\left( x \right)=\frac{{{2018}^{x}}}{{{2018}^{x}}+\sqrt{2018}}.$ Giá trị của biểu thức
$S=f\left( \frac{1}{2017} \right)+f\left( \frac{2}{2017} \right)+...+f\left( \frac{2016}{2017} \right)$ là:
Gọi \[x,y\] là các số thực dương thỏa mãn điều kiện \[{{\log }_{9}}x={{\log }_{6}}x={{\log }_{4}}(x+y)\] và \[\frac{x}{y}=\frac{-a+\sqrt{b}}{2}\], với \[a,b\] là hai số nguyên dương. Tính \[a+b\].
Cho $a,\,b,\,c$ là các số thực lớn hơn 1.Tìm giá trị nhỏ nhất $P{}_{\min }$ của biểu thức
$P=$ $\frac{4}{{{\log }_{\sqrt{bc}}}a}+\frac{1}{{{\log }_{a\,c}}\sqrt{b}}+\frac{8}{3{{\log }_{a\,b}}\sqrt[3]{c}}.$
Cho hàm số \[f\left( x \right)=\ln \left( 1-\frac{1}{{{x}^{2}}} \right).\] Biết rằng \[f\left( 2 \right)+f\left( 3 \right)+...+f\left( 2018 \right)=\ln a-\ln b+\ln c-\ln d\] với a, b, c, d là các số nguyên dương, trong đó a, c, d là các số nguyên tố và \[a
Tìm tập nghiệm S của phương trình $\log \left| x \right|=\left| \log x \right|.$
Cho $f\left( x \right)={{e}^{\sqrt{1+\frac{1}{{{x}^{2}}}+\frac{1}{{{\left( x+1 \right)}^{2}}}}}}.$ Biết rằng \[f\left( 1 \right).f\left( 2 \right).f\left( 3 \right)...f\left( 2017 \right)={{e}^{\frac{m}{n}}}\] với m, n là các số tự nhiên và $\frac{m}{n}$ là phân số tối giản. Tính $m-{{n}^{2}}.$
Gọi \[x\text{ }v\grave{a}\text{ }y\] là các số thực dương thỏa mãn điều kiện ${{\log }_{9}}x={{\log }_{6}}y={{\log }_{4}}\left( x+y \right)$ và $\frac{x}{y}=\frac{-a+\sqrt{b}}{2}$ với a, b là hai số nguyên dương. Tính \[T\text{ }=\text{ }a\text{ }+\text{ }b.\]
Cho x, y là hai số thực dương thỏa mãn điều kiện $4+{{9.3}^{{{x}^{2}}-2y}}=\left( 4+{{9}^{{{x}^{2}}-2y}} \right){{.7}^{2y-{{x}^{2}}+2}}$ . Tìm giá trị nhỏ nhất của biểu thức $P=\frac{x+2y+18}{x}.$
Tìm bộ ba số nguyên dương (a;b;c) thỏa mãn:
log1 + log(1 + 3) + log(1 + 3 + 5) +...+ log(1 + 3 + 5 + ... + 19) − 2log5040 = a + blog2 + clog3