Đặt `A = 1 + 1/5 + 1/5^2 + 1/5^3 + .... + 1/5^500`
`5A = 5 + 1 + 1/5 + 1/5^2 + .... + 1/5^499`
`5A - A = ( 5 + 1 + 1/5 + 1/5^2 + .... + 1/5^499 ) - ( 1 + 1/5 + 1/5^2 + 1/5^3 + .... + 1/5^500 )`
`4A = 5 - 1/5^500`
`4A = ( 5^501 - 1 )/5^500`
`A = ( 5^501 - 1 )/5^500 : 4`
`A = ( 5^101 - 1 )/( 5^500 . 4 )`
Vậy `, A = ( 5^101 - 1 )/( 5^500 . 4 ) .`