`1)x-(-5)=1`
`→x+5=1`
`→x=1-5`
`→x=-4`
Vậy `x=-4`
`2)(-10)+x (x-1)`
`=-10+x^2-x`
`3)2+ (x - 2)=(-13)`
`→2+x-2=-13`
`→x=-13`
Vậy `x=-13`
`4)( x+3) - 5= (-2)`
`→x+3=-2+5`
`→x+3=3`
`→x=0`
Vậy `x=0`
`5)8-( 1- x)=5`
`→8-1+x=5`
`→7+x=5`
`→x=5-7`
`→x=-2`
`6)|x|=5`
`→` \(\left[ \begin{array}{l}x=5\\x=-5\end{array} \right.\)
Vậy `x∈{5;-5}`
`7)|x|-5=7`
`→|x|=7+5`
`→|x|=12`
`→` \(\left[ \begin{array}{l}x=12\\x=-12\end{array} \right.\)
Vậy `x∈{12;-12}`
`8)|x+2|=3`
`→` \(\left[ \begin{array}{l}x+2=3\\x+2=-3\end{array} \right.\)
`→` \(\left[ \begin{array}{l}x=1\\x=-5\end{array} \right.\)
Vậy `x∈{1;-5}`
`9)|x- 5|=10`
`→` \(\left[ \begin{array}{l}x-5=10\\x-5=-10\end{array} \right.\)
`→` \(\left[ \begin{array}{l}x=15\\x=-5\end{array} \right.\)
Vậy `x∈{15;-5}`
`10)|5- x|=2`
`→` \(\left[ \begin{array}{l}5-x=2\\5-x=-2\end{array} \right.\)
`→` \(\left[ \begin{array}{l}x=3\\x=7\end{array} \right.\)
Vậy `x∈{3;7}`