Bài giải:
1.
Ta có:
$I_{2}=\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]$
$2A=\left[\begin{array}{ccc}0&0\\2&0\end{array}\right]$
$4A^2=2A.2A=\left[\begin{array}{ccc}0&0\\0&0\end{array}\right]$
$8A^3=...=2^n.A^n=\left[\begin{array}{ccc}0&0\\0&0\end{array}\right]$
=>∑$A^n$=$\left[\begin{array}{ccc}1&0\\2&1\end{array}\right]$
2.
Do $det A=-7$ $\neq$ $0$ nên A khả nghịch.
Ta có:
$A_{11}=4,A_{12}=3,A_{21}=5,A_{22}=2=>(A_{ij})_2=\left[\begin{array}{ccc}4&3\\5&2\end{array}\right]$
=>Ma trận phù hợp là:$adjA=[(A_{ij})_2]^T=\left[\begin{array}{ccc}4&5\\3&2\end{array}\right]$
Vậy $A^{-1}=\frac{1}{detA}.adjA=\frac{-1}{7}.\left[\begin{array}{ccc}4&5\\3&2\end{array}\right]$