1, Tìm x biết:
a, x\(^2\) - 2x +1 = 0
b, ( 5x + 1)\(^2\) - (5x - 3) ( 5x + 3) = 30
c, ( x - 1) ( x\(^2\) + x + 1) - x ( x +2 ) ( x - 2) = 5
d, ( x - 2)\(^3\) - ( x - 3) ( x\(^2\) + 3x + 9 ) + 6 ( x + 1)\(^2\) = 15
2, Chứng minh các đa thức sau luôn luôn dương với mọi x, y :
a, x\(^2\) + 2x + 2
b, 4x\(^2\) - 12x + 11
c, x\(^2\) - x + 1
d, x\(^2\) - 2x + y\(^2\) + 4y + 6
3, Tìm x, y biết :
a, x\(^2\) + y\(^2\) - 2x + 4y + 5 = 0
b, x\(^2\) + 4y\(^2\) + 6x - 12y + 18 = 0
c, 5x\(^2\) + 9y\(^2\) - 12xy - 6x + 9 = 0
d, 2x\(^2\) + 2y\(^2\) + 2xy - 10x - 8y + 41 = 0