D = \(-\dfrac{5}{x^2-4x+7}\)
 Vì: x2 - 4x + 7 
 = x2 - 4x + 4 + 3
 = (x - 2)2 + 3 \(\ge\) 3 \(\forall\)x
 \(\Rightarrow\) \(\dfrac{5}{\left(x-2\right)^2+3}\) \(\le\) \(\dfrac{5}{3}\) \(\forall\)x
 \(\Rightarrow\) \(-\dfrac{5}{\left(x-2\right)^2+3}\)\(\ge\)-\(\dfrac{5}{3}\) \(\forall\)x
 Dấu"=" xảy ra khi:
 x - 2 = 0
 \(\Rightarrow\) x = 2
 Vậy=.
 E = \(\dfrac{2x^2+4x+4}{x^2+2x+4}\)
  Ta có:
 \(\dfrac{2x^2+4x+4}{x^2+2x+4}\)
 = \(\dfrac{2\left(x^2+2x+4\right)-4}{x^2+2x+4}\)
 = 2 - \(\dfrac{4}{x^2+2x+4}\)
 Vì: 
 x2 + 2x + 4
 = x2 + 2x + 1 + 3
 = (x + 1)2 + 3 \(\ge\) 3 \(\forall\)x
 \(\Rightarrow\) \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{4}{3}\) \(\forall\)x
 \(\Rightarrow\) 2 - \(\dfrac{4}{\left(x+1\right)^2+3}\) \(\le\) \(\dfrac{2}{3}\) \(\forall\)x
 Dấu "=" xảy ra khi:
 x + 1 = 0
 \(\Rightarrow\) x = -1
 Vậy=...
 F = \(\dfrac{6x+8}{x^2+1}\)
 = \(\dfrac{x^2+6x+9-x^2-1}{x^2+1}\)
 = \(\dfrac{\left(x+3\right)^2-\left(x^2+1\right)}{x^2+1}\)
 = \(\dfrac{\left(x+3\right)^2}{x^2+1}-1\) \(\ge\) -1 \(\forall\)x
 Dấu "=" xảy ra khi:
 (x + 3)2 = 0
 \(\Rightarrow\) x + 3 = 0
 \(\Rightarrow\) x = -3
 Vậy=--.