Bài 1:
a) \(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1\)
b) Sửa đề \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)-3^{64}\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)-3^{64}\)
\(=3^{64}-1-3^{64}\)
\(=-1\)
Bài 2:
Ta có:
\(A=2009.2009\)
\(A=2009\left(2008+1\right)\)
\(A=2009.2008+2009\)
Ta lại có:
\(B=2008.2010\)
\(B=2008\left(2009+1\right)\)
\(B=2008.2009+2008\)
Vì 2008.2009 = 2009.2008
2009 > 2008
=> 2008.2009 + 2009 > 2009.2008 + 2008
=> A > B