Ta có
$\left( \dfrac{3}{2x} - \dfrac{5}{2} \right)^{60} = \left( \dfrac{1}{8} \right)^{20} : \left( -\dfrac{1}{4} \right)^{10}$
$<-> \left( \dfrac{3}{2x} - \dfrac{5}{2} \right)^{60} = \dfrac{1}{(2^3)^{20}} : \dfrac{1}{(2^2)^{10}}$
$<-> \left( \dfrac{3}{2x} - \dfrac{5}{2} \right)^{60} =\dfrac{2^{20}}{2^{60}}$
$<-> \left( \dfrac{3}{2x} - \dfrac{5}{2} \right)^{60} = \dfrac{1}{2^{40}}$
$<-> \dfrac{3}{2x} - \dfrac{5}{2} = \pm \dfrac{1}{\sqrt[3]{4}}$
$<-> \dfrac{3}{2x} = \dfrac{5}{2} \pm \dfrac{1}{\sqrt[3]{4}}$
$<-> \dfrac{3}{x} = 5 \pm \sqrt[3]{2}$
$<-> x = \dfrac{3}{5 \pm \sqrt[3]{2}}$
Vậy $x = \dfrac{3}{5 \pm \sqrt[3]{2}}$.