Đk: \(\left\{\begin{matrix} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! x\geq -\frac{1}{3}\\6-4y-y^{2}\geq 0 \end{matrix}\right.\)
Xét phương trình \(2y^{3}+12y^{2}+25y+18=(2x+9)\sqrt{x+4}\; \; \; (1)\)
\(2y^{3}+12y^{2}+25y+18=(2x+9)\sqrt{x+4}\)
\(\Leftrightarrow 2(y+2)^{3}+(y+2)=2(x+4)\sqrt{x+4}+\sqrt{x+4}\)
\(f(t)=2t^{3}+t\Leftrightarrow f'(t)=6t^{2}+1> 0\)
\((1)\Leftrightarrow f(y+2)=f(\sqrt{x+4})\Leftrightarrow y+2=\sqrt{x+4}\Leftrightarrow \left\{\begin{matrix} y\geq -2\\x=4y+y^{2} \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2y^{3}+12y^{2}+25y+18=(2x+9)\sqrt{x+4}\\\sqrt{3x+1}+3x^{2}-14x-8=\sqrt{6-4y-y^{2}} \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! x=4y+y^{2}\\\sqrt{3x+1}-\sqrt{6-x}+3x^{2}-14x-8=0 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! x=4y+y^{2}\\(\sqrt{3x+1}-4)-(\sqrt{6-x}-1)+3x^{2}-14x-5=0 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! x=4y+y^{2}\\\frac{3(x-5)}{(\sqrt{3x+1}-4)}+\frac{x-5}{(\sqrt{6-x-1})}+(3x+1)=0 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=4y+y^{2}\\(x-5)\left [ \frac{3}{(\sqrt{3x+1}-4)}+\frac{1}{(\sqrt{6-x}-1)}+(3x+1) \right ]=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=5\\y=1 \end{matrix}\right.\)
\(\frac{3}{(\sqrt{3x+1}-4)}+\frac{1}{(\sqrt{6-x}-1)}+(3x+1)> 0,\forall x\geq -\frac{1}{3}\)
Vậy hệ có nghiệm x = 5; y = 1