Ta có : $A = \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{20.21.22}$
$\to 2A = \dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+....+\dfrac{2}{20.21.22}$
$ = \dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{20.21}-\dfrac{1}{21.22}$
$ = \dfrac{1}{1.2}-\dfrac{1}{21.22}$
$ = \dfrac{1}{2} - \dfrac{1}{462} = \dfrac{115}{231}$
$\to A = \dfrac{115}{462} > \dfrac{114}{462} = \dfrac{57}{231}$