Đáp án:
\[m = 2\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
3x - y = 2m + 8\\
x + y = 2m - 4
\end{array} \right.\\
\Rightarrow \left( {3x - y} \right) + \left( {x + y} \right) = \left( {2m + 8} \right) + \left( {2m - 4} \right)\\
\Leftrightarrow 4x = 4m + 4\\
\Leftrightarrow x = m + 1\\
x + y = 2m - 4 \Leftrightarrow \left( {m + 1} \right) + y = 2m - 4 \Leftrightarrow y = m - 5\\
P = {x^2} + {y^2} = {\left( {m + 1} \right)^2} + {\left( {m - 5} \right)^2}\\
= {m^2} + 2m + 1 + {m^2} - 10m + 25\\
= 2{m^2} - 8m + 26\\
= 2.\left( {{m^2} - 4m + 4} \right) + 18\\
= 2{\left( {m - 2} \right)^2} + 18 \ge 18,\,\,\,\,\,\forall m\\
\Rightarrow {P_{\min }} = 18 \Leftrightarrow {\left( {m - 2} \right)^2} = 0 \Leftrightarrow m = 2
\end{array}\)
Vậy \(m = 2\) thì \({x^2} + {y^2}\) đạt GTNN bằng \(18\)