Vì P là số $NT$ $\neq$ $2$ và $3$
$⇒P>3$ thì $P= 3K+1,P=3K+2$
+)Nếu $P=3K+1$
$⇒P^2-1=9K+1-1=9K$ chia hết cho $3 (1)$
+) Nếu $P=3K+2$
$⇒P^2-1=9K+4-1=9K+3$ chia hết cho $3 (2)$
Từ $1,2 ⇒$ Nếu P là số nguyên tố khác 2 và 3 thì$ P^2 -1$ chia hết cho $3$
$Chúc,bạn,học,tốt,điểm,A+$