Đáp án:
Giải thích các bước giải:
$ msin²x + cos²x = m - 1$
$⇔2msin²x + 2cos²x = 2m - 2$
$⇔m(1 - cos2x) + 1 + cos2x = 2m - 2$
$⇔ (1 - m)cos2x = m - 3$
$⇔ cos2x = \frac{m - 3}{1 - m} ( m \neq 1)$
$ x ∈ (0; \frac{π}{4}) ⇒ 2x ∈ (0; \frac{π}{2}) ⇒ 0 < cos2x < 1$
$⇔ 0 < \frac{m - 3}{1 - m} < 1$
$⇔ \left \{ {{\frac{m - 3}{1 - m} > 0 } \atop {\frac{m - 3}{1 - m} - 1< 0}} \right.$
$⇔ \left \{ {{1 < m < 3 } \atop {\frac{2(m - 2)}{1 - m} < 0 }} \right.$
$⇔ \left \{ {{1 < m < 3 } \atop { m < 1; m > 2 }} \right.$
$ ⇔ 2 < m < 3$