Đáp án:
$a)$ `S = {5; -1}`
$b)$ `S = {1; 4}`
$c)$ `S = {-1; -1/2}`
$d)$ `S = {6; 2}`
$e)$ `S = {1/2}`
Giải thích các bước giải:
$a) x² -4x -5 = 0$
$⇔ x.(x -5) +x -5 = 0$
$⇔ (x -5).(x +1) = 0$
$⇔ \left[ \begin{array}{l}x -5 = 0\\x +1 = 0\end{array} \right. ⇔ \left[ \begin{array}{l}x=5\\x=-1\end{array} \right.$
$Vậy$ `S = {5; -1}`
$b) x² -5x +4 = 0$
$⇔ x.(x -4) -(x -4) = 0$
$⇔ (x -4).(x -1) = 0$
$⇔ \left[ \begin{array}{l}x -4 = 0\\x -1 = 0\end{array} \right. ⇔ \left[ \begin{array}{l}x=4\\x=1\end{array} \right.$
`Vậy` `S = {1; 4}`
$c) 2x² +3x +1 = 0$
`⇔ 2x.(x +1) +(x +1) = 0`
`⇔ (x +1).(2x +1) = 0`
$⇔ \left[ \begin{array}{l}x +1 =0\\2x +1=0\end{array} \right. ⇔ \left[ \begin{array}{l}x=-1\\x=\dfrac{-1}{2}\end{array} \right. $
$Vậy$ `S = {-1; -1/2}`
$d) x² -8x +12 = 0$
$⇔ x.(x -6) -2.(x -6) = 0$
$⇔ (x -6).(x -2) = 0$
$⇔ \left[ \begin{array}{l}x -6 = 0\\x -2 = 0\end{array} \right. ⇔ \left[ \begin{array}{l}x=6\\x=2\end{array} \right.$
$Vậy$ `S = {6; 2}`
$e) x² -x +1/4 = 0$
`⇔ (x -1/2)² = 0`
`⇔ x -1/2 = 0`
`⇔ x = 1/2`
$Vậy$ `S = {1/2}`