Đáp án:
$\begin{array}{l}
2)P = \dfrac{{3x + \sqrt {9x} - 3}}{{x + \sqrt x - 2}} - \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}} + \dfrac{{\sqrt x - 2}}{{1 - \sqrt x }}\\
= \dfrac{{3x + 3\sqrt x - 3}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}} - \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}} - \dfrac{{\sqrt x - 2}}{{\sqrt x - 1}}\\
= \dfrac{{3x + 3\sqrt x - 3 - \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right) - \left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{{3x + 3\sqrt x - 3 - x + 1 - x + 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{{x + 3\sqrt x + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x + 1} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}}\\
Có:\sqrt P \\
\Rightarrow Dk:P \ge 0\\
\Rightarrow \dfrac{{\sqrt x + 1}}{{\sqrt x - 1}} \ge 0\\
\Rightarrow \sqrt x > 1\\
P = \dfrac{{\sqrt x - 1 + 2}}{{\sqrt x - 1}} = 1 + \dfrac{2}{{\sqrt x - 1}}\\
Do:\sqrt x - 1 > 0\\
\Rightarrow \dfrac{2}{{\sqrt x - 1}} < 0\\
\Rightarrow 1 + \dfrac{2}{{\sqrt x - 1}} < 1\\
\Rightarrow P < 1\\
\Rightarrow P < \sqrt P \\
3)\\
B = \dfrac{{x - 3\sqrt x + 4}}{{x - 2\sqrt x }} - \dfrac{1}{{\sqrt x - 2}}\\
= \dfrac{{x - 3\sqrt x + 4}}{{\sqrt x \left( {\sqrt x - 2} \right)}} - \dfrac{1}{{\sqrt x - 2}}\\
= \dfrac{{x - 3\sqrt x + 4 - \sqrt x }}{{\sqrt x \left( {\sqrt x - 2} \right)}}\\
= \dfrac{{{{\left( {\sqrt x - 2} \right)}^2}}}{{\sqrt x \left( {\sqrt x - 2} \right)}}\\
= \dfrac{{\sqrt x - 2}}{{\sqrt x }}\\
\Rightarrow P = \dfrac{B}{A} = \dfrac{{\sqrt x - 2}}{{\sqrt x }}:\dfrac{{2\sqrt x + 1}}{{\sqrt x }}\\
= \dfrac{{\sqrt x - 2}}{{2\sqrt x + 1}}\\
\left| P \right| > P\\
\Rightarrow P < 0\\
\Rightarrow \dfrac{{\sqrt x - 2}}{{2\sqrt x + 1}} < 0\\
\Rightarrow \sqrt x - 2 < 0\left( {do:2\sqrt x + 1 > 1 > 0} \right)\\
\Rightarrow \sqrt x < 2\\
\Rightarrow x < 4\\
Vay\,0 < x < 4
\end{array}$