Thực hiện phép chia hai đa thức, ta được:
$x^3 + 2x + 2 - a = (x - 1)(x^2 + x + 3) + \dfrac{5 - a}{x - 1}$
Với $\dfrac{5 - a}{x - 1}$ là phân dư của phép chia.
$(x^3 + 2x + 2 - a) \vdots (x - 1) \Leftrightarrow \dfrac{5-a}{x + 1} = 0 \Leftrightarrow 5 - a = 0 \Leftrightarrow a = 5$
Vậy $a = 5$ là số thoả yêu cầu bài toán