Đáp án:
a) $x \in \left\{ {0;2;4;6} \right\}$
b) $x \in \left\{ { - 3;1;3;4;6;7;9;13} \right\}$
c) $x \in \left\{ { - 25; - 15; - 10; - 9; - 7; - 6; - 4; - 3; - 1;0;5;15} \right\}$
Giải thích các bước giải:
a) ĐKXĐ: $x\ne 3$
Ta có:
$\begin{array}{l}
A = \dfrac{{ - 3}}{{x - 3}}\\
A \in Z \Leftrightarrow \dfrac{{ - 3}}{{x - 3}} \in Z \Leftrightarrow x - 3 \in U\left( 3 \right)\left( {x \in Z} \right)\\
\Leftrightarrow x - 3 \in \left\{ { - 3; - 1;1;3} \right\} \Leftrightarrow x \in \left\{ {0;2;4;6} (tm)\right\}
\end{array}$
Vậy $x \in \left\{ {0;2;4;6} \right\}$ thỏa mãn đề bài.
b) ĐKXĐ: $x\ne 5$
Ta có:
$\begin{array}{l}
B = \dfrac{{x + 3}}{{x - 5}} = \dfrac{{x - 5 + 8}}{{x - 5}} = 1 + \dfrac{8}{{x - 5}}\\
B \in Z \Leftrightarrow 1 + \dfrac{8}{{x - 5}} \in Z \Leftrightarrow \dfrac{8}{{x - 5}} \in Z\\
\Leftrightarrow x - 5 \in U\left( 8 \right)\left( {x \in Z} \right)\\
\Leftrightarrow x - 5 \in \left\{ { - 8; - 4; - 2; - 1;1;2;4;8} \right\}\\
\Leftrightarrow x \in \left\{ { - 3;1;3;4;6;7;9;13} \right\}\left( {tm} \right)
\end{array}$
Vậy $x \in \left\{ { - 3;1;3;4;6;7;9;13} \right\}$ thỏa mãn đề bài.
c) ĐKXĐ: $x\ne -5$
Ta có:
$\begin{array}{l}
C = \dfrac{{4x}}{{x + 5}} = \dfrac{{4\left( {x + 5} \right) - 20}}{{x + 5}} = 4 - \dfrac{{20}}{{x + 5}}\\
C \in Z \Leftrightarrow 4 - \dfrac{{20}}{{x + 5}} \in Z \Leftrightarrow \dfrac{{20}}{{x + 5}} \in Z\\
\Leftrightarrow x + 5 \in U\left( {20} \right)\left( {x \in Z} \right)\\
\Leftrightarrow x + 5 \in \left\{ { - 20; - 10; - 5; - 4; - 2; - 1;1;2;4;5;10;20} \right\}\\
\Leftrightarrow x \in \left\{ { - 25; - 15; - 10; - 9; - 7; - 6; - 4; - 3; - 1;0;5;15} \right\}(tm)
\end{array}$
Vậy $x \in \left\{ { - 25; - 15; - 10; - 9; - 7; - 6; - 4; - 3; - 1;0;5;15} \right\}$ thỏa mãn đề.