Đáp án:$32a,x-\sqrt{x}$
$33a, 0$ ; $33b , P=\frac{-\sqrt{x}}{1+\sqrt{x}}$
Giải thích các bước giải:
Câu 32:
$P=\frac{x^2+\sqrt{2}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}$
$P=\frac{\sqrt{x}(x\sqrt{x} + 1)}{x-\sqrt{x}+1}+1-\frac{\sqrt{x}(2\sqrt{x}+1}{\sqrt{x}}$
$P=\frac{\sqrt{x}(\sqrt{x^3}+1)}{x-\sqrt{x}+1}+1-2\sqrt{x}-1$
$P=\frac{\sqrt{x}(\sqrt{x}+1)(x-\sqrt{x}+1}{x-\sqrt{x}+1}-2\sqrt{x}$
$P=\sqrt{x}(\sqrt{x}+1)-2\sqrt{x}$
$P=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}$
Câu 33:
a,$\sqrt{48}-2\sqrt{75}+\sqrt{108}$
$=4.\sqrt{3}-2.5.\sqrt{3}+6\sqrt{3}$
$=4\sqrt{3}-10\sqrt{3}+6\sqrt{3}=0$
b,
$P=(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}).(1-\frac{1}{\sqrt{x}})$
$P=(\frac{1+\sqrt{x}}{1-x}-\frac{1-\sqrt{x}}{1-x}).(\frac{\sqrt{x}-1}{\sqrt{x}}$
$P=(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x})(\frac{\sqrt{x}-1}{\sqrt{x}}$
$P=(\frac{2\sqrt{x}}{(1-\sqrt{x})(1+\sqrt{x})}.(\frac{\sqrt{x}-1}{\sqrt{x}}$
$P=\frac{-\sqrt{x}}{(\sqrt{x}-1)(1+\sqrt{x})}.({x}-1)$
$P=\frac{-\sqrt{x}}{1+\sqrt{x}}$
Vậy $P=\frac{-\sqrt{x}}{1+\sqrt{x}}$
Cho mình câu trả lời hay nhất nhé , chúc bạn học tốt.