Đáp án:
$\begin{array}{l}
a)\left( {{x^2} + c.x + 2} \right)\left( {a.x + b} \right)\\
= a.{x^3} + b{x^2} + ac{x^2} + bcx + 2ax + 2b\\
= a{x^3} + \left( {b + ac} \right){x^2} + \left( {bc + 2a} \right)x + 2b\\
= {x^3} + {x^2} - 2\\
\Rightarrow \left\{ \begin{array}{l}
a = 1\\
b + ac = 1\\
bc + 2a = 0\\
2b = - 2
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
a = 1\\
b = - 1\\
- 1 + 1.c = 1\\
- 1.c + 2.1 = 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
a = 1\\
b = - 1\\
c = 2
\end{array} \right.\\
b)\left( {a{y^2} + by + c} \right)\left( {y + 3} \right)\\
= a{y^3} + 3a{y^2} + b{y^2} + 3by + cy + 3c\\
= a{y^3} + \left( {3a + b} \right){y^2} + \left( {3b + c} \right)y + 3c\\
= {y^3} + 2{y^2} - 3y\\
\Rightarrow \left\{ \begin{array}{l}
a = 1\\
3a + b = 2\\
3b + c = - 3\\
3c = 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
a = 1\\
3 + b = 2\\
3b + c = - 3\\
c = 0
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
a = 1\\
b = - 1\\
c = 0
\end{array} \right.\\
c)\left( {{z^2} - z + 1} \right)\left( {a{z^2} + bz + c} \right)\\
= a{z^4} + b{z^3} + c{z^2} - a{z^3} - b{z^2} - cz\\
+ a{z^2} + bz + c\\
= a{z^4} + \left( {b - a} \right){z^3} + \left( {c - b + a} \right){z^2}\\
+ \left( { - c + b} \right)z + c\\
= 2{z^4} - {z^3} + 2{z^2} + 1\\
\Rightarrow \left\{ \begin{array}{l}
a = 2\\
b - a = - 1\\
c - b + a = 2\\
- c + b = 0\\
c = 1
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
a = 2\\
b = 1\\
c - 1 + 2 = 2\\
b = c\\
c = 1
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
a = 2\\
b = c = 1
\end{array} \right.
\end{array}$
Câu 6 thiếu đề bài.