Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
1,\\
x = \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}} = \dfrac{{{{\left( {\sqrt 2 - 1} \right)}^2}}}{{\left( {\sqrt 2 + 1} \right)\left( {\sqrt 2 - 1} \right)}} = \dfrac{{{{\left( {\sqrt 2 - 1} \right)}^2}}}{{2 - 1}} = {\left( {\sqrt 2 - 1} \right)^2}\\
A = \dfrac{x}{{x - \sqrt x + 1}} = \dfrac{{{{\left( {\sqrt 2 - 1} \right)}^2}}}{{{{\left( {\sqrt 2 - 1} \right)}^2} - \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} + 1}}\\
= \dfrac{{3 - 2\sqrt 2 }}{{\left( {3 - 2\sqrt 2 } \right) - \left( {\sqrt 2 - 1} \right) + 1}}\\
= \dfrac{{3 - 2\sqrt 2 }}{{5 - 3\sqrt 2 }} = \dfrac{{\left( {3 - 2\sqrt 2 } \right)\left( {5 + 3\sqrt 2 } \right)}}{{\left( {5 - 3\sqrt 2 } \right)\left( {5 + 3\sqrt 2 } \right)}}\\
= \dfrac{{15 + 9\sqrt 2 - 10\sqrt 2 - 2\sqrt 2 .3\sqrt 2 }}{{25 - {{\left( {3\sqrt 2 } \right)}^2}}}\\
= \dfrac{{3 - \sqrt 2 }}{7}\\
2,\\
B = \dfrac{{x + 2\sqrt x + 1}}{{x\sqrt x + 1}} = \dfrac{{{{\left( {\sqrt x + 1} \right)}^2}}}{{\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}} = \dfrac{{\sqrt x + 1}}{{x - \sqrt x + 1}}\\
1 - A = 1 - \dfrac{x}{{x - \sqrt x + 1}} = \dfrac{{\left( {x - \sqrt x + 1} \right) - x}}{{x - \sqrt x + 1}} = \dfrac{{ - \sqrt x + 1}}{{x - \sqrt x + 1}}\\
P = \dfrac{{1 - A}}{B} = \dfrac{{ - \sqrt x + 1}}{{x - \sqrt x + 1}}:\dfrac{{\sqrt x + 1}}{{x - \sqrt x + 1}} = \dfrac{{ - \sqrt x + 1}}{{\sqrt x + 1}}\\
\left( {x - 1} \right).P = - 9\\
\Leftrightarrow \left( {x - 1} \right).\dfrac{{ - \sqrt x + 1}}{{\sqrt x + 1}} = - 9\\
\Leftrightarrow \left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right).\dfrac{{\sqrt x - 1}}{{\sqrt x + 1}} = 9\\
\Leftrightarrow {\left( {\sqrt x - 1} \right)^2} = 9\\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt x - 1 = 3\\
\sqrt x - 1 = - 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\sqrt x = 4\\
\sqrt x = - 2
\end{array} \right. \Leftrightarrow \sqrt x = 4 \Leftrightarrow x = 16\\
3,\\
P > \dfrac{1}{2} \Leftrightarrow \dfrac{{ - \sqrt x + 1}}{{\sqrt x + 1}} - \dfrac{1}{2} > 0\\
\Leftrightarrow \dfrac{{2.\left( { - \sqrt x + 1} \right) - \left( {\sqrt x + 1} \right)}}{{2\left( {\sqrt x + 1} \right)}} > 0\\
\Leftrightarrow \dfrac{{ - 3\sqrt x + 1}}{{2\left( {\sqrt x + 1} \right)}} > 0\\
\Leftrightarrow - 3\sqrt x + 1 > 0\\
\Leftrightarrow 3\sqrt x - 1 < 0\\
\Leftrightarrow \sqrt x < \dfrac{1}{3}\\
\Leftrightarrow 0 \le x < \dfrac{1}{9}
\end{array}\)