Đáp án:
$\begin{array}{l}
6)Dkxd:x \ge 2\\
\sqrt {x - 1 + 2\sqrt {x - 2} } = 2\\
\Rightarrow \sqrt {x - 2 + 2\sqrt {x - 2} + 1} = 2\\
\Rightarrow \sqrt {{{\left( {\sqrt {x - 2} + 1} \right)}^2}} = 2\\
\Rightarrow \sqrt {x - 2} + 1 = 2\\
\Rightarrow \sqrt {x - 2} = 1\\
\Rightarrow x - 2 = 1\\
\Rightarrow x = 3\left( {tmdk} \right)\\
7)Dkxd:x \ge 4\\
\sqrt {x + 4\sqrt {x - 4} } = 2\\
\Rightarrow \sqrt {x - 4 + 4\sqrt {x - 4} + 4} = 2\\
\Rightarrow \sqrt {{{\left( {\sqrt {x - 4} + 2} \right)}^2}} = 2\\
\Rightarrow \sqrt {x - 4} + 2 = 2\\
\Rightarrow \sqrt {x - 4} = 0\\
\Rightarrow x = 4\left( {tmdk} \right)\\
8)Dkxd:\left[ \begin{array}{l}
x \ge 3\\
x \le - 3
\end{array} \right.\\
\sqrt {{x^2} - 9} + \sqrt {{x^2} - 6x + 9} = 0\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt {{x^2} - 9} = 0\\
\sqrt {{x^2} - 6x + 9} = 0
\end{array} \right.\\
\Rightarrow x = 3\left( {tmdk} \right)\\
9)Dkxd:x \ge \frac{3}{2}\\
\sqrt {2x - 2 + 2\sqrt {2x - 3} } + \sqrt {2x + 13 + 8\sqrt {2x - 3} } = 5\\
\Rightarrow \sqrt {2x - 3 + 2\sqrt {2x - 3} + 1} + \sqrt {2x - 3 + 8\sqrt {2x - 3} + 16} = 5\\
\Rightarrow \sqrt {{{\left( {\sqrt {2x - 3} + 1} \right)}^2}} + \sqrt {{{\left( {\sqrt {2x - 3} + 4} \right)}^2}} = 5\\
\Rightarrow \sqrt {2x - 3} + 1 + \sqrt {2x - 3} + 4 = 5\\
\Rightarrow \sqrt {2x - 3} = 0\\
\Rightarrow 2x - 3 = 0\\
\Rightarrow x = \frac{3}{2}\left( {tmdk} \right)\\
10)Dkxd:x \ge - \frac{3}{2}\\
\Rightarrow {x^2} + 4x + 5 = 2\sqrt {2x + 3} \\
\Rightarrow {\left( {x + 2} \right)^2} + 1 = 2\sqrt {2x + 3} \left( {vn} \right)\\
11)\sqrt {x + 3} + \sqrt {y - 2} + \sqrt {z - 3} = \frac{1}{2}\left( {x + y + z + 1} \right)\\
\Rightarrow 2\sqrt {x + 3} + 2\sqrt {y - 2} + 2\sqrt {z - 3} = x + y + z + 1\\
\Rightarrow x + 3 - 2\sqrt {x + 3} + 1 + y - 2 - 2\sqrt {y - 2} + 1\\
+ z - 3 - 2\sqrt {z - 3} + 1 = 0\\
\Rightarrow {\left( {\sqrt {x + 3} - 1} \right)^2} + {\left( {\sqrt {y - 2} - 1} \right)^2}\\
+ {\left( {\sqrt {z - 3} - 1} \right)^2} = 0\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt {x + 3} = 1\\
\sqrt {y - 2} = 1\\
\sqrt {z - 3} = 1
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = - 2\\
y = 3\\
z = 4
\end{array} \right.\\
12)x + y + 4 = 2\sqrt x + 4\sqrt {y - 1} \\
\Rightarrow x - 2\sqrt x + 1 + y - 1 - 4\sqrt {y - 1} + 4 = 0\\
\Rightarrow {\left( {\sqrt x - 1} \right)^2} + {\left( {\sqrt {y - 1} - 2} \right)^2} = 0\\
\Rightarrow \left\{ \begin{array}{l}
\sqrt x = 1\\
\sqrt {y - 1} = 2
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = 1\\
y - 1 = 4
\end{array} \right.\\
\Rightarrow \left\{ \begin{array}{l}
x = 1\\
y = 5
\end{array} \right.
\end{array}$