Đáp án:
$\begin{array}{l}
B6)\\
a)A = \sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}} - \sqrt 2 \\
= \sqrt 2 - 1 - \sqrt 2 \\
= - 1\\
b)B = \sqrt {8 + 2\sqrt {15} } + \sqrt {4 + 2\sqrt 3 } \\
= \sqrt {{{\left( {\sqrt 5 + \sqrt 3 } \right)}^2}} + \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} \\
= \sqrt 5 + \sqrt 3 + \sqrt 3 + 1\\
= \sqrt 5 + 2\sqrt 3 + 1\\
c)C = \sqrt {17 + 12\sqrt 2 } + \sqrt {17 - 12\sqrt 2 } \\
= \sqrt {{{\left( {3 + 2\sqrt 2 } \right)}^2}} + \sqrt {{{\left( {3 - 2\sqrt 2 } \right)}^2}} \\
= 3 + 2\sqrt 2 + 3 - 2\sqrt 2 \\
= 6\\
d)D = \sqrt {3 + 2\sqrt 2 } - \sqrt {6 - 4\sqrt 2 } \\
= \sqrt {{{\left( {\sqrt 2 + 1} \right)}^2}} - \sqrt {{{\left( {2 - \sqrt 2 } \right)}^2}} \\
= \sqrt 2 + 1 - 2 + \sqrt 2 \\
= 2\sqrt 2 - 1\\
e)E = 5 + \sqrt {7 - 2\sqrt 6 } - 2\sqrt 6 \\
= 5 + \sqrt {{{\left( {\sqrt 6 - 1} \right)}^2}} - 2\sqrt 6 \\
= 5 + \sqrt 6 - 1 - 2\sqrt 6 \\
= 4 - \sqrt 6 \\
f)F = \left( {\sqrt {5 - 2\sqrt 6 } + \sqrt 2 } \right).\sqrt 3 \\
= \left( {\sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} + \sqrt 2 } \right).\sqrt 3 \\
= \left( {\sqrt 3 - \sqrt 2 + \sqrt 2 } \right).\sqrt 3 \\
= \sqrt 3 .\sqrt 3 \\
= 3\\
B7)\\
a)\dfrac{{\sqrt {6 + 2\sqrt 5 } }}{{\sqrt 5 + 1}} = \dfrac{{\sqrt 5 + 1}}{{\sqrt 5 + 1}} = 1\\
b)\left( {\dfrac{{3 - 2\sqrt 3 }}{{\sqrt 3 - 2}} + \dfrac{{2 - \sqrt 2 }}{{\sqrt 2 - 1}}} \right):\left( {\sqrt 2 - \sqrt 3 } \right)\\
= \left( {\dfrac{{\sqrt 3 \left( {\sqrt 3 - 2} \right)}}{{\sqrt 3 - 2}} + \dfrac{{\sqrt 2 \left( {\sqrt 2 - 1} \right)}}{{\sqrt 2 - 1}}} \right).\dfrac{1}{{\sqrt 2 - \sqrt 3 }}\\
= \left( {\sqrt 3 + \sqrt 2 } \right).\dfrac{{\sqrt 3 + \sqrt 2 }}{{2 - 3}}\\
= - {\left( {\sqrt 3 + \sqrt 2 } \right)^2}\\
= - 5 - 2\sqrt 6 \\
c)\sqrt {\dfrac{{3 + \sqrt 5 }}{{3 - \sqrt 5 }}} + \sqrt {\dfrac{{3 - \sqrt 5 }}{{3 + \sqrt 5 }}} \\
= \dfrac{{\sqrt {{{\left( {3 + \sqrt 5 } \right)}^2}} }}{{\sqrt {9 - 5} }} + \dfrac{{\sqrt {{{\left( {3 - \sqrt 5 } \right)}^2}} }}{{\sqrt {9 - 5} }}\\
= \dfrac{{3 + \sqrt 5 }}{2} + \dfrac{{3 - \sqrt 5 }}{2}\\
= 3\\
d)\dfrac{{u - v}}{{\sqrt u + \sqrt v }} - \dfrac{{\sqrt {{u^3}} + \sqrt {{v^3}} }}{{u - v}}\\
= \sqrt u - \sqrt v - \dfrac{{\left( {\sqrt u + \sqrt v } \right)\left( {u - \sqrt {uv} + v} \right)}}{{\left( {\sqrt u + \sqrt v } \right)\left( {\sqrt u - \sqrt v } \right)}}\\
= \sqrt u - \sqrt v - \dfrac{{u - \sqrt {vu} + v}}{{\sqrt u - \sqrt v }}\\
= \dfrac{{{{\left( {\sqrt u - \sqrt v } \right)}^2} - u + \sqrt {vu} - v}}{{\sqrt u - \sqrt v }}\\
= \dfrac{{ - \sqrt {uv} }}{{\sqrt u - \sqrt v }}\\
= \dfrac{{\sqrt {uv} }}{{\sqrt v - \sqrt u }}
\end{array}$