A(x) = x³ - 4x
B(x) = x³ - x² - 12x - 15
A(x) = B(x)
⇔ x³ - 4x = x³ - x² - 12x - 15
⇔ x² + 12x - 4x + 15 = 0
⇔ x² + 8x + 15 = 0
⇔ x² + 5x + 3x + 15 = 0
⇔ (x² + 5x ) + (3x + 15 )= 0
⇔ x (x + 5 ) + 3 ( x + 5 ) = 0
⇔ ( x + 3 ) ( x + 5 ) = 0
⇔ \(\left[ \begin{array}{l}x=-5\\x=-3\end{array} \right.\)
Vậy để A(x) = B(x) thì x ∈ { - 5 ; - 3 }