Đáp án:
$\left[\begin{array}{l}x = \dfrac{\pi}{2} + k2\pi\\x =\dfrac{\pi}{6}+k2\pi\\x = \dfrac{5\pi}{6}+ k2\pi\end{array}\right.\quad (k\in \Bbb Z)$
Giải thích các bước giải:
$cos2x + 3sinx - 2 = 0$
$\Leftrightarrow 1 - 2sin^2x + 3sinx - 2 = 0$
$\Leftrightarrow 2sin^2x - 3sinx +1 = 0$
$\Leftrightarrow \left[\begin{array}{l}sinx = 1\\sinx =\dfrac{1}{2}\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}x = \dfrac{\pi}{2} + k2\pi\\x =\dfrac{\pi}{6}+k2\pi\\x = \dfrac{5\pi}{6}+ k2\pi\end{array}\right.\quad (k\in \Bbb Z)$