Bài 16:
$a)$$333^{222}$ và $222^{333}$
$333^{222}$$=(3.111)^{2.111}=$ $9^{111}.$$(111^{111})^2$
$222^{333}$$=(2.111)^{2.111}=$ $8^{111}.$ $(111^{111})^2.$$111^{111}$
Ta có $9^{111}.$$(111^{111})^2<$ $8^{111}.$ $(111^{111})^2.$$111^{111}$ . Do đó $333^{222}<$ $222^{333}$
$b)$$5^{300}$ và $3^{453}$
$5^{300}$$=(5^2)^{150}=$ $25^{150}$
$2^{45}$ $=(3^3)^{151}=$ $27^{151}$
Ta có $27^{151}>$ $25^{150}$ . Do đó $5^{300}<$$3^{453}$