Đáp án:
Giải thích các bước giải:
$e)2x^2-5x+3_{}$
⇔ $2x^2-2x-3x+3_{}$
⇔ $2x(x-1)-3(x-1)_{}$
⇔ $(x-1)(2x-3)_{}$
$f)3x^2+5x-2_{}$
⇔ $3x^2+6x-x-2_{}$
⇔ $3x(x+2)-(x+2)_{}$
⇔ $(x+2)(3x-1)_{}$
$g)15x^2-x-6_{}$
⇔ $15x^2+9x-10x-6_{}$
⇔ $3x(5x+3)-2(5x+3)_{}$
⇔ $(5x+3)(3x-2)_{}$
$i)3x^2+7x-76_{}$
⇔ $3x^2+19x-12x-76_{}$
⇔ $x(3x+19)-4(3x+19)_{}$
⇔ $(3x+19)(x-4)_{}$
$k)2x^2+3881x-17505_{}$
⇔ $2x^2+3809x-9x-17505_{}$
⇔ $2x(x+1945)-9(x+1945)_{}$
⇔ $(2x-9)(x+1945)_{}$
$l)\frac{1}{2}x^2-\frac{19}{6}x+1_{}$
⇔ $\frac{1}{6}.(3x^2-19x+6)_{}$
⇔ $\frac{1}{6}.(3x^2-x-18x+6)_{}$
⇔ $\frac{1}{6}.[x.(3x-1)-6.(3x-1) ]_{}$
⇔ $\frac{1}{6}.(3x-1)(x-6)_{}$