`D = RR \\ {kπ; π/2 + kπ | k ∈ ZZ}`
`tan x - 2cot x + 1 = 0`
`<=> tan x - 2/(tan x) + 1 = 0`
`=> tan^2 x - 2 + tan x = 0`
`<=>` \(\left[ \begin{array}{l}tan x = 1\\tan x = -2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x = \dfrac{π}{4} + kπ\\x = arctan -2 + kπ\end{array} \right.\) `(k ∈ ZZ)`