Đáp án:
Giải thích các bước giải:
c) \({x^3} + {y^3} + {z^3} - 3xyz\)
Ta có:
\(\begin{array}{l}
{\left( {x + y} \right)^3} = {x^3} + 3{x^2}y + 3x{y^2} + {y^3}\\
= {x^3} + {y^3} + 3xy\left( {x + y} \right)\\
\Rightarrow {x^3} + {y^3} = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right)
\end{array}\)
Do đó:
\({x^3} + {y^3} + {z^3} - 3xyz\)
\( = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right) \)\(+ {z^3} - 3xyz\)
\( = {\left( {x + y} \right)^3} + {z^3} \)\( - [3xy\left( {x + y} \right)- 3xyz]\)
\( = \left[ {{{\left( {x + y} \right)}^3} + {z^3}} \right]\)\( - 3xy\left( {x + y + z} \right) \)
\( = \left( {x + y + z} \right)\left[ {{{\left( {x + y} \right)}^2} - \left( {x + y} \right)z + {z^2}} \right]\)\( - 3xy\left( {x + y + z} \right) \)
\( = \left( {x + y + z} \right)( {x^2} + 2xy + {y^2} - xz - yz \)\(+ {z^2} - 3xy ) \)
\( = \left( {x + y + z} \right)( {x^2} + {y^2} + {z^2} - xy - xz\)\( - yz) \)