`B2:`
`A=(A+B+C).(A^2+B^2+C^2-AB-BC-CA)`
`A=A^3+AB^2+AC^2-A^2B-ABC-A^2C+A^2B+B^3+BC^2-AB^2-B^2C-ABC+CA^2+CB^2+C^3-ABC-C^2B-C^2A`
`A=A^3+B^3+C^3-3ABC`
`B4:`
Ta có : $a+b+c+d=0$
$⇒a+b=-c-d$
$⇒(a+b)^3 = - (c+d)^3$
$⇒a^3+b^3+3ab.(a+b) = -c^3-d^3-3cd.(c+d)$
$⇒a^3+b^3+c^3+d^3 = -3cd.(c+d) - 3ab.(a+b)$
$⇒a^3+b^3+c^3+d^3 = 3ab.(c+d) - 3cd.(c+d)$
( Do $-(a+b) = c+d$ )
$⇒a^3+b^3+c^3+d^3 = 3.(c+d).(ab-cd)$