a) `2(x-1)-x=8`
`<=> 2x-2-x=8`
`<=>x=10`
Vậy `S={10}`
b) `(x-2)^2-(x-3)(x+3)=6`
`<=> x^2-4x+4-x^2+9=6`
` <=> -4x = -7`
`x=7/4`
Vậy `S={7/4}`
c) `x(2x-3)-2x^2=12`
`<=>2x^2-3x-2x^2=12`
`<=> -3x=12`
`<=>x=-4`
Vậy `S{-4}`
d) `(x+7)^2-5x-35=0`
`<=> x^2+14x+49-5x-35=0`
`<=> x^2 + 9x+14=0`
`<=> x^2 + 2x + 7x + 14=0`
`<=> x(x+2)+7(x+2)=0`
`<=> (x+2)(x+7)=0`
`<=>` \(\left[ \begin{array}{l}x=-2\\x=-7\end{array} \right.\)
Vậy `S=[-2;-7}`