`a) x(x-1)-x^2+2x=5`
`<=> x^2-x-x^2+2x=5`
`<=> x=5`
`b) 4x^3-36x=0`
`<=> 4x(x^2-9)=0`
`<=> 4x(x-3)(x+3)=0`
`<=>`\(\left[ \begin{array}{l}x=0\\x-3=0\\x+3=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=0\\x=3\\x=-3\end{array} \right.\)
`c) 2x^2-2x=(x-1)^2`
`<=> 2x^2-2x=x^2-2x+1`
`<=> 2x^2-2x-x^2+2x-1=0`
`<=> x^2-1=0`
`<=> (x-1)(x+1)=0`
`<=>`\(\left[ \begin{array}{l}x-1=0\\x+1=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\)
`d) (x-7)(x^2-9x+20)(x-2)=72`
`<=> [(x-7)(x-2)](x^2-9x+20)=72`
`<=> (x^2-9x+14)(x^2-9x+20)-72=0`
`<=> (x^2-9x+17-3)(x^2-9x+17+3)-72=0`
`<=> (x^2-9x+17)^2-9-72=0`
`<=> (x^2-9x+17)^2-81=0`
`<=> (x^2-9x+17-9)(x^2-9x+17+9)=0`
`<=> (x^2-9x+8)(x^2-9x+26)=0`
`<=> (x^2-8x-x+8)(x^2-9x+26)=0`
`<=> (x-8)(x-1)(x^2-9x+26)=0`
Do `x^2-9x+26=x^2-2.x. 9/2+81/4+23/4=(x-9/2)^2+23/4>0` với `∀x`
`=>`\(\left[ \begin{array}{l}x-8=0\\x-1=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=8\\x=1\end{array} \right.\)