Bài 1 :
`a) 3x^2-6x=0`
`<=> 3x(x-2)=0`
`<=>`\(\left[ \begin{array}{l}3x=0\\x-2=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=0\\x=2\end{array} \right.\)
`b) (5x-4)^2-49x^2`
`=(5x-4)^2-(7x)^2`
`=(5x-4-7x)(5x-4+7x)`
`=(-2x-4)(12x-4)`
`=-2(x+2).4(3x-1)`
`=-8(x+2)(3x-1)`
Bài 2:
`A=5x^2+9y^2-12xy-6x+2027`
`A=(4x^2-12xy+9y^2)+(x^2-6x+9)+2018`
`A=(2x-3y)^2+(x-3)^2+2018>=2018`
Dấu = có khi `2x-3y=0; x-3=0`
`<=> x=3; y=(2x)/3`
`<=> x=3; y=2`
Vậy `min A=2018` khi `x=3; y=2`