1.
a,
$\Big(2x-\dfrac{1}{x}\Big)^{10}$
$=\sum\limits_{k=0}^{10}C_{10}^k.2^{10-k}.x^{10-k}.(-1)^k.\dfrac{1}{x^k}$
$=\sum\limits_{k=0}^{10}C_{10}^k.2^{10-k}.(-1)^k.x^{10-2k}$
$\Rightarrow 10-2k=0\Leftrightarrow k=5$
Vậy số hạng là: $C_{10}^5.2^5.(-1)^5=-8064$
b,
$\Big(\dfrac{1}{x}+3x^4\Big)^{12}$
$=\sum\limits_{k=0}^{12}C_{12}^k.\dfrac{1}{x^{12-k}}.3^k.x^{4k}$
$=\sum\limits_{k=0}^{12}C_{12}^k.3^k.x^{5k-12}$
$\Rightarrow 5k-12=0\Leftrightarrow k=2,4$ (vô lí)
Vậy không tồn tại số hạng không có x.
2.
$(1+3x)^n=\sum\limits_{k=0}^n.C_n^k.3^k.x^k$
$\Rightarrow k=2$
Ta có $C_n^2.3^2=90$
$\Leftrightarrow C_n^2=10$
$\Leftrightarrow \dfrac{n!}{2!(n-2)!}=10$
$\Leftrightarrow n(n-1)=20$
$\Leftrightarrow n=5$