Đáp án:
e) \(x = \dfrac{3}{2}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ge  - 2\\
\sqrt {2 + x} \left( { - x + 2x + 1} \right) = 0\\
 \to \left[ \begin{array}{l}
2 + x = 0\\
 - x + 2x + 1 = 0
\end{array} \right.\\
 \to \left[ \begin{array}{l}
x =  - 2\left( {TM} \right)\\
x = 1 + \sqrt 2 \left( {TM} \right)\\
x = 1 - \sqrt 2 \left( {TM} \right)
\end{array} \right.\\
b)DK:{x^2} - 3 \ge 0 \to \left[ \begin{array}{l}
x \ge \sqrt 3 \\
x \le  - \sqrt 3 
\end{array} \right.\\
\sqrt {{x^2} - 3}  = 1 \to {x^2} - 3 = 1\\
 \to {x^2} = 4\\
 \to \left[ \begin{array}{l}
x = 2\\
x =  - 2
\end{array} \right.\left( {TM} \right)\\
c)DK:x \ge  - \dfrac{5}{2}\\
\sqrt {3{x^2} - 4x - 4}  = \sqrt {2x + 5} \\
 \to 3{x^2} - 4x - 4 = 2x + 5\\
 \to 3{x^2} - 6x - 9 = 0\\
 \to \left[ \begin{array}{l}
x = 3\\
x =  - 1
\end{array} \right.\left( {TM} \right)\\
d)\left| {2x - 4} \right| = 3 - 5x\\
 \to \left[ \begin{array}{l}
2x - 4 = 3 - 5x\left( {DK:x \ge 2} \right)\\
2x - 4 =  - 3 + 5x\left( {DK:x < 2} \right)
\end{array} \right.\\
 \to \left[ \begin{array}{l}
7x = 7\\
3x =  - 1
\end{array} \right.\\
 \to \left[ \begin{array}{l}
x = 1\left( l \right)\\
x =  - \dfrac{1}{3}\left( {TM} \right)
\end{array} \right.\\
e)DK:x \ne  \pm 1\\
\dfrac{{2x}}{{{x^2} - 1}} - 2 = \dfrac{1}{{x + 1}}\\
 \to \dfrac{{2x - 2{x^2} + 2}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = \dfrac{1}{{x + 1}}\\
 \to \dfrac{{2x - 2{x^2} + 2 - x + 1}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = 0\\
 \to  - 2{x^2} + x + 3 = 0\\
 \to \left[ \begin{array}{l}
x = \dfrac{3}{2}\left( {TM} \right)\\
x =  - 1\left( l \right)
\end{array} \right.
\end{array}\)