\(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\)
 \(A=\left(-1\right)^{2n+n+n+1}\)
 \(A=\left(-1\right)^{4n+1}\)
 \(B=\left(10000-1^2\right).\left(10000-2^2\right)...\left(10000-1000^2\right)\)
 \(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-100^2\right)...\left(10000-1000^2\right)\)
 \(B=\left(10000-1^2\right)\left(10000-2^2\right)...\left(10000-10000\right)...\left(10000-1000^2\right)\)
 \(B=\left(10000-1^2\right)\left(10000-2^2\right)...0\left(10000-1000^2\right)\)
 \(B=0\)
 \(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
 \(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{5^3}\right)...\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
 \(C=\left(\dfrac{1}{125}-\dfrac{1}{1^3}\right)\left(\dfrac{1}{125}-\dfrac{1}{2^3}\right)...0-\left(\dfrac{1}{125}-\dfrac{1}{25^3}\right)\)
 \(C=0\)
 \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-10^3\right)}\)
 \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-1000\right)}\)
 \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)...0}\)
 \(D=1999^0\)
 \(D=1\)