Đáp án:
Giải thích các bước giải:
a) $27x^3+27x^2+9x+1+x+\cfrac{1}{3}\\=\cfrac{1}{3}(81x^3+81x^2+27x+4)\\=\cfrac{1}{3}((81x^3+27x^2)+(54x^2+18x)+(12x+4))\\=\cfrac{1}{3}(27x^2(3x+1)+18x(3x+1)+4(3x+1))\\=\cfrac{1}{3}(3x+1)(27x^2+18x+4)$
b) $x(x+1)^2+x(x-5)-5(x+1)^2\\=(x+1)^2(x-5)+x(x-5)\\=(x-5)((x+1)^2+x)\\=(x-5)(x^2+3x+1)$