Đáp án:
c) \(\begin{array}{l}
\left( 2 \right) \to x \in \left( { - \infty ; - 2} \right] \cup \left( {1;2} \right]\\
KL:x \in \left( { - \infty ; - 4} \right] \cup \left( {1;2} \right]
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)\left\{ \begin{array}{l}
\left( {x - 3} \right)\left( {\sqrt 2 - x} \right) > 0\\
\dfrac{{4x - 3 - 2x - 6}}{2} < 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\sqrt 2 < x < 3\\
2x - 9 < 0
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\sqrt 2 < x < 3\\
x < \dfrac{9}{2}
\end{array} \right.\\
\to \sqrt 2 < x < 3\\
b)\left\{ \begin{array}{l}
\dfrac{{2\left( {3 - x} \right) - 2x + 1}}{{\left( {2x - 1} \right)\left( {3 - x} \right)}} \le 0\\
\left| x \right| < 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{{6 - 2x - 2x + 1}}{{\left( {2x - 1} \right)\left( {3 - x} \right)}} \le 0\\
- 1 < x < 1
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{{7 - 4x}}{{\left( {2x - 1} \right)\left( {3 - x} \right)}} \le 0\left( 1 \right)\\
- 1 < x < 1
\end{array} \right.
\end{array}\)
BXD:
x -∞ 1/2 7/4 3 +∞
(1) - // + 0 - // +
\(\begin{array}{l}
\left( 1 \right) \to x \in \left( { - \infty ;\dfrac{1}{2}} \right) \cup \left[ {\dfrac{7}{4};3} \right)\\
KL:x \in \left( { - 1;\dfrac{1}{2}} \right)
\end{array}\)
\(\begin{array}{l}
c)\left\{ \begin{array}{l}
\dfrac{{2x + 3}}{{x - 1}} \ge 1\\
\dfrac{{\left( {x + 2} \right)\left( {2x - 4} \right)}}{{x - 1}} \le 0\left( 2 \right)
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{{2x + 3 - x + 1}}{{x - 1}} \ge 0\\
\dfrac{{\left( {x + 2} \right)\left( {2x - 4} \right)}}{{x - 1}} \le 0\left( 2 \right)
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\dfrac{{x + 4}}{{x - 1}} \ge 0\\
\dfrac{{\left( {x + 2} \right)\left( {2x - 4} \right)}}{{x - 1}} \le 0\left( 2 \right)
\end{array} \right.\\
\to \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x > 1\\
x \le - 4
\end{array} \right.\\
\dfrac{{\left( {x + 2} \right)\left( {2x - 4} \right)}}{{x - 1}} \le 0\left( 2 \right)
\end{array} \right.
\end{array}\)
BXD:
x -∞ -2 1 2 +∞
(2) - 0 + // - 0 +
\(\begin{array}{l}
\left( 2 \right) \to x \in \left( { - \infty ; - 2} \right] \cup \left( {1;2} \right]\\
KL:x \in \left( { - \infty ; - 4} \right] \cup \left( {1;2} \right]
\end{array}\)