Đáp án:
Giải thích các bước giải:
$\bullet \,\,\,\,\,$Xét $\Delta ABH$ và $\Delta ACK$, ta có:
$AB=AC$ ( Vì $\Delta ABC$ cân tại $A$ )
$AH=AK$ ( giả thiết )
$\widehat{BAC}$ là góc chung
$\to \Delta ABH=\Delta ACK$ ( cạnh – góc – cạnh )
$\to \widehat{ABH}=\widehat{ACK}$ ( hai góc tương ứng )
$\bullet \,\,\,\,\,$Ta có:
$\begin{cases}\widehat{ABH}+\widehat{OBC}=\widehat{ABC}\\\widehat{ACK}+\widehat{OCB}=\widehat{ACB}\end{cases}$
Mà:
$\widehat{ABH}=\widehat{ACK}$ ( chứng minh trên )
$\widehat{ABC}=\widehat{ACB}$ ( $\Delta ABC$ cân tại $A$ )
Nên
$\widehat{OBC}=\widehat{OCB}$
$\to \Delta OBC$ là tam giác cân tại $O$