Đáp án:
$\begin{array}{l}
a)25.\left( {75 - 49} \right) + 75\left| {25 - 49} \right|\\
= 25.75 - 25.49 + 75.\left( {49 - 25} \right)\\
= 25.75 - 25.49 + 75.49 - 75.25\\
= 49.\left( {75 - 25} \right)\\
= 49.50\\
= 2450\\
b)23.\left( {64 - 51} \right) - 51.\left( { - 23 - 64} \right) - 26.\left( { - 64} \right)\\
= 23.64 - 23.51 + 51.23 + 51.64 + 26.64\\
= \left( {23.64 + 26.64} \right) + 51.\left( { - 23 + 23 + 64} \right)\\
= 64.\left( {23 + 26 + 51} \right)\\
= 64.100\\
= 6400\\
2)a) - 7 - 2x = - 1\\
\Rightarrow 2x = - 6\\
\Rightarrow x = - 3\\
Vậy\,x = - 3\\
b)125 - 3.\left( {x + 18} \right) = 77\\
\Rightarrow 3\left( {x + 18} \right) = 125 - 77\\
\Rightarrow 3.\left( {x + 18} \right) = 48\\
\Rightarrow x + 18 = 16\\
\Rightarrow x = - 2\\
Vậy\,x = - 2\\
c)\left( {x + 3} \right)\left( {2 - x} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
x = - 3\\
x = 2
\end{array} \right.\\
Vậy\,x = - 3;x = 2\\
d)\left( { - 100} \right):{\left( {2x - 7} \right)^2} = - 4\\
\Rightarrow {\left( {2x - 7} \right)^2} = 25\\
\Rightarrow \left[ \begin{array}{l}
2x - 7 = 5\\
2x - 7 = - 5
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
2x = 12\\
2x = 2
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = 6\\
x = 1
\end{array} \right.\\
Vậy\,x = 6;x = 1\\
e){\left( {1 - 3x} \right)^3} = - 8\\
\Rightarrow 1 - 3x = - 2\\
\Rightarrow 3x = 3\\
\Rightarrow x = 1\\
Vậy\,x = 1\\
f) - 9 - \left( {21 - 3x} \right) = - 215 - \left( {84 - 215} \right)\\
\Rightarrow - 9 - 21 + 3x = - 215 - 84 + 215\\
\Rightarrow 3x - 30 = - 84\\
\Rightarrow 3x = - 54\\
\Rightarrow x = - 18\\
Vậy\,x = - 18\\
g)5\left( {3 - x} \right) - 2\left( {7 - x} \right) = - 14\\
\Rightarrow 15 - 5x - 14 + 2x = - 14\\
\Rightarrow 3x = 15\\
\Rightarrow x = 5\\
Vậy\,x = 5\\
h)3\left| {3x - 1} \right| + 5 = 14\\
\Rightarrow \left| {3x - 1} \right| = 3\\
\Rightarrow \left[ \begin{array}{l}
3x - 1 = 3\\
3x - 1 = - 3
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
x = \frac{4}{3}\\
x = \frac{2}{3}
\end{array} \right.\\
i)\left( {x + 2} \right)\left( {x - 3} \right) < 0\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + 2 > 0\\
x - 3 < 0
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 2 < 0\\
x - 3 > 0
\end{array} \right.
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x > - 2\\
x < 3
\end{array} \right.\\
\left\{ \begin{array}{l}
x < - 2\\
x > 3
\end{array} \right.\left( {ktm} \right)
\end{array} \right.\\
Vậy\, - 2 < x < 3
\end{array}$
$\begin{array}{l}
k)\left( {{x^2} + 1} \right)\left( {25 - {x^2}} \right) = 0\\
\Rightarrow 25 - {x^2} = 0\left( {do:{x^2} + 1 > 0} \right)\\
\Rightarrow {x^2} = 25\\
\Rightarrow x = \pm 5
\end{array}$