`B = 1/2 + (1/2)^2 + (1/2)^3 + (1/2)^4 + ... + (1/2)^{98} + (1/2)^{99}`
`⇔ B = 1/2 + 1/2^2 + 1/2^3 + 1/2^4 + ... + 1/2^{98} + 1/2^{99}`
`⇔ 2B = 1 + 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^{97} + 1/2^{98}`
`⇔ 2B - B = (1 + 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^{97} + 1/2^{98}) - (1/2 + 1/2^2 + 1/2^3 + 1/2^4 + ... + 1/2^{98} + 1/2^{99})`
`⇔ B = 1 - 1/2^{99}`
`⇔ B < 1 (đpcm)`
Vì nếu `1 - 1/2^{99}` thì kết quả sẽ là số âm nên `⇒ B < 1`