$\text{Cho 2 số đó lần lượt là:} \overline{ab}, \overline{cd}$.
$\text{Điều kiện: do một số là lập phương}$
$\text{, một số là bình phương.}$
$\to \overline{ab}\ge 8; \overline{cd} \ge 4$.
$\text{Ta có:}$
$(\overline{ab})^3=\overline({cd})^2$
$\text{Ta thấy:}$
$2.2.2.2=4.4$
$\to 4^2=16$
$\to 4^3=16.4$
$\to 16.4=64$
$\to 16.4.16.4=64.64$
$\to 16.16.16=64^2$
$\to 16^3=64^2$
$\text{Vậy 2 số } \overline{ab}, \overline{cd}.$
$\text{lần lượt có giá trị là:}$
$16^3 \text{ và} 64^2.$