Giải thích các bước giải:
a.Ta có $ABCD$ là hình thang cân
$\to AD=BC=13$
Ta có $AH\perp CD$
Kẻ $BE\perp CD\to AH//BE$
Mà $AB//CD\to AB//HE\to ABEH$ là hình chữ nhật
$\to HE=AB=10, AH=BE$
$\to DH^2=AD^2-AH^2=BC^2-BE^2=CE^2\to DH=EC$
Mà $DH+HE+EC=DC$
$\to 2DH+EH=DC$
$\to 2DH+10=30$
$\to DH=10$
$\to AH=\sqrt{AD^2-DH^2}=\sqrt{69}$
$\to S_{ABCD}=\dfrac12AH(AB+CD)=20\sqrt{69}$
b.Từ câu a
$\to AB=DH(=10)$
Mà $AB//DH\to ABHD$ là hình bình hành
$\to S_{ABHD}=AH\cdot AB=10\sqrt{69}$