`a/(b+2c) =(2b)/(c+5a)=(3c)/(2a+7c)`
`⇒(6a)/(6b+12c)=(6b)/(3c+15a)=(6c)/(4a+14b)`
`⇒(6a)/(6b+12c) .3 =(6b)/(3c+15a) .3=(6c)/(4a+14b) .3`
`⇒(18a)/(6b+12c)=(18b)/(3c+15a)=(18c)/(4a+14b)`
Giả sử `a>b>c>0`
`⇒18a>6b+12c`
`⇒(18a)/(6b+12c)>1`
`⇒18c<4a+14b`
`⇒(18c)/(4a+14b)<1`
`⇒(18a)/(6b+12c)`$\neq$ `(18c)/(4a+14b)`
⇒Giả sử sai
`⇒a=b=c`
`⇒a/(2b+c)=(2b)/(c+5a)=(3c)/(2a+7c)=1/3`