ĐKXĐ: $\begin{cases}x+1\ne 0\\x-3\ne 0\\x-2\ne 0\end{cases}↔\begin{cases}x\ne -1\\x\ne 3\\x\ne 2\end{cases}$
$\\$
$\dfrac{x}{x+1}+\dfrac{x}{x-3}=\dfrac{3x}{(x-2)(x-3)}$
$↔x(x-2)(x-3)+x(x+1)(x-2)=3x.(x+1)$
$↔x(x²-5x+6)+x(x²-x-2)=3x²+3x$
$↔x³-5x²+6x+x³-x²-2x-3x²-3x=0$
$↔2x³-9x²+x=0$
$↔x(2x²-9x+1)=0$
$↔2x.(x²-2.\dfrac{9}{4}.x+\dfrac{81}{4}-\dfrac{79}{4})=0$
$↔2x.[(x-\dfrac{9}{4})-\dfrac{79}{4}]=0$
$↔2x.(x+\dfrac{-9+2\sqrt{79}}{4})(x-\dfrac{9+2\sqrt{79}}{4})=0$
$↔x=0\quad or\quad x+\dfrac{-9+2\sqrt{79}}{4}=0\quad or\quad x-\dfrac{9+2\sqrt{79}}{4}=0$
$↔x=0(TM)\quad or\quad x=\dfrac{9-2\sqrt{79}}{4}(TM)\quad or\quad x=\dfrac{9+2\sqrt{79}}{4}(TM)$