Đặt `A= 1/3 + 1/3^2 + 1/3^3 +...+1/3^100`
`1/3A= 1/3( 1/3 + 1/3^2 + 1/3^3 +...+1/3^100)`
`1/3A = 1/3^2 + 1/3^3 + 1/3^4 +...+1/3^101`
`A- 1/3 A= 1/3 + 1/3^2 + 1/3^3 +...+1/3^100- 1/3^2 - 1/3^3- 1/3^4 -...-1/3^101`
`2/3 A= 1/3 - 1/3^101`
`A= (1/3 - 1/3^101) : 2/3`
`A= (1/3 - 1/3^101) . 3/2`
`A= 1/2 - 1/(3^100 .2)`
Vậy `A= 1/2 - 1/(3^100 .2)`