`b)`
`-23/28+x=-11/12`
`=>x=-11/12+23/28`
`=>x=-2/21`
Vậy `x=-2/21`
`c)`
`1/4 - |3-x| = -3/4`
`=>|3-x|=1/4-(-3/4)`
`=>|3-x|=1`
`=>` \(\left[ \begin{array}{l}3-x=1\\3-x=-1\end{array} \right.\) `=>` \(\left[ \begin{array}{l}x=2\\x=4\end{array} \right.\)
Vậy `x\in{2;4}`
`d)`
`|3/4 x-1/2| -1= 1/4`
`=>|3/4x-1/2|=1/4+1`
`=>|3/4x-1/2|=5/4`
`=>` \(\left[ \begin{array}{l}\dfrac{3}{4}x-\dfrac{1}{2}=\dfrac{5}{4}\\\dfrac{3}{4}x-\dfrac{1}{2}=-\dfrac{5}{4}\end{array} \right.\) `=>` \(\left[ \begin{array}{l}x=\dfrac{7}{3}\\x=-1\end{array} \right.\)
Vậy `x\in{-1;7/3}`
`e)`
`x^2:1/2=49/12`
`=>x^2=49/12 . 1/2`
`=>x^2=49/24`
`=>x=+-\sqrt{49/24}`
Vậy `x\in{+-\sqrt{49/24}}`
`g)`
`x^2 . 5/5=5/27`
`=>x^2=5/27:5/5`
`=>x^2=5/27`
`=>x=+-\sqrt{5/27}`
Vậy `x\in{+-\sqrt{5/27}}`