`a,|2x-1|=x+3`
ĐK: x+3≥0
⇔x≥-3
⇔\(\left[ \begin{array}{l}2x-1=x+3\\2x-1=-x-3\end{array} \right.\)
⇔\(\left[ \begin{array}{l}2x-x=3+1\\2x+x=-3+1\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=4(N)\\3x=-2\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=4(N)\\x=-2/3(N)\end{array} \right.\)
Vậy `S={4;-2/3}`
`b, x^2-6>2x-2`
`⇔x^2-2x+1-5>0`
`⇔(x-1)²>5`
`⇔x-1>±√5`
⇔\(\left[ \begin{array}{l}x-1>√5\\x-1>-√5\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x>1+√5\\x>1-√5\end{array} \right.\)